{0 be agile
Patterns of Instantiation

ol’i‘)
e 0 N\
P
o CApgy, =
WO “‘e\:‘\‘)’s\fw OCP SULD &
S
w N oy
= |\ o8 Sy ;?
@ |35 & 2/l -z | @
U EE g8 | 4
I |52 e
O | gz = S
O| /sp DIP _| ®
: R S e
| erigr2eN Mamion g/ 165teest
| €
| ey fest pe-

Object Lifecycle Management

info@ToBeAgile.com © Copyright 2019 To Be Agile DB20190710

m Software developer since 1980
® Trained 8,000 developers since 1990
m Author of the book Beyond Legacy

Code: Nine Practices to Extend the Life
(and Value) of Your Software

Website: http://ToBeAgile.com

Twitter: @ToBeAgile

{0 be agile

1/12/23

http://tobeagile.com/
mailto:info@ToBeAgile.com
http://tobeagile.com/

| My Book — Beyond Legacy Code 0DRallE-+

http:/ToBeAgile.com
info@ToBeAdile.com

-
= Nine practices to design and build
Beyond Legacy Code healthy code, plus some tips on

Nine Practices to Extend the Life
(and Value) of Your Software dealing with legacy code.

David seott Bernstein | Discusses the value and reasoning
SOV behind the technical practices, so
both managers and the team can get
on the same page as to their value.

= Jt’s not a “How To” book, it’s a
“Why To” book.

edited by Jacquelyn Carter

http://BeyondLegacyCode.com

{0 be agile s

Why this Talk?

R

m |nstantiation is at the very core of object-oriented programming but often
misunderstood and under-utilized.

m Failing to leverage instantiation in object-oriented programming creates
tightly coupled classes that are difficult to extend.

m This is the biggest technical issue | find in virtually all the code | see from
my clients, who are the largest companies in the world.

® When we leverage object instantiation we build software that is
straightforward to extend and verify, dropping the cost of ownership.

m In the 1990s, | taught nearly 4,000 professional software developers
wrong, everyone did, and | want to make up for that now as best | can.

{0 be agile 4

1/12/23

http://tobeagile.com/
mailto:info@ToBeAgile.com
http://beyondlegacycode.com/

Patterns and Anti-Patterns

e

m Design patterns is a term coined by Christopher Alexander who used it to
describe the forces that make a structure “livable.”

m Design patterns were adopted by software developers to describe
common intents or way of encapsulating something that is varying.

m We commonly think of patterns as “best practices.”
m |f patterns are “best practices” then anti-patterns are “worst practices.”

m In this session, we'll look at some common anti-patterns, why they should
be avoided, and what good patterns can be used instead.

{0 be agile ;

Anti-Pattern: Creating Objects You Use m i l

® Good Intention: Create an object so you can use its services.
m Flaw: Over-encapsulates services that an object uses.

m Result: From the outside, the created object becomes indistinguishable
from the object that creates it, making it impossible to independently
verify, extend, or reuse.

m Testability: Objects that create the services they use are inseparable from
those services so they must be tested together, which can make tests
slow and unreliable.

m Contraindications: This only applies to external dependencies or objects
you might want to extend in the future.

{0 be agile 6

1/12/23

Why It’s Bad to Create Objects You Use

m_ When one object instantiates another object and then uses it
there’s no way to substitute the object it's using.

m This creates a dependency between the two pieces of code that
makes it impossible to test each piece separately.

m [t also means that we can’t extend one without changing the other.

m Following this anti-pattern causes a system to become brittle,
intertwined, and nearly impossible to work with.

{0 be agile ,

For Example

m_ A common programming practice is to new up the services you
need in an object’s construction. For example:

public class MyClass {

Service myService; Instantiates

public MyClass () { —

Service myService = new Service();
}
public void doSomething() {

% Uses
myService.process();*”/////
VA

}

{0 be agile 5

1/12/23

1/12/23

Problems with New

B The “new” keyword is used to create an instance of a class
B |t requires that you pass in the class name
m |t returns an instance of the class

B Therefore the caller of “new” must know the class it wants to
create

{0 be agile 0

Here’s some code that I would have written 17 years ago

public class Document {
Sort sortStrategy;
public Document () {
Sort sortStrategy = new Sort();

}

public void prepareDocument () {
/% . %/
sortStrategy.sort () ;
/* o0 %))

Creates

Uses

{0 be agile 0

10

1/12/23

m_ The more you know about an object the more coupled to it you
can get

m When two or more objects are coupled you cannot change one
without affecting the others

{0 be agile y

11

m The fewer dependencies the client has the greater degree of
freedom the service has to change

B You must know different things to create an object versus use
an object

{0 be agile 2

12

B To instantiate an object you must know:

— The object’s type

— Any overloaded constructors

{0 be agile s

13

| Creating Example

® What can you change without affecting the caller?

— You can change the method signature

® What can you not change without affecting the caller?

— You cannot change the specific derivations

Sort

Document +sort(Stringf]): Stringf]

| ShellSort || QuickSort || MergeSort |

))

{0 be agile 4

14

1/12/23

To Use an Object

m To call methods on an object you must know:
— The object’s type, or
— The type the object is derived from, or
— An interface the object implements

m When you call a method you are also coupled to its interface

{0 be agile s

15

® What can you change without affecting the caller?

— You can add new derivations

® What can you not change without affecting the caller?

— You cannot change the method signature

D 0 Sort
+sort(String[]): String(]

A

| ShellSort || QuickSort || MergeSort |

{0 be agile o

16

1/12/23

m_ We are not striving for a system without any coupling

We want the coupling that reflects the nature of the problem

Each class should only be aware of the entities it must interact with

We don’t want unnecessary coupling in the system

t0 be agile .

17

Bad Coupling

-

B Relationships that are not explicit can take many forms:

— Global variables
— Magic numbers
— Split functionality

— Overly generalized method signatures

{0 be agile 18

18

1/12/23

Name ‘ Coupled To

Type coupling The existence of a class

Interface coupling The method signatures of another class
Abstract coupling The abstract type only

Concrete coupling A subtype in a polymorphic set

{0 be agile

19

19

AbstractService

Type Coupling

method()

Interface Coupling / ,#‘

Servicel

Service2

method()

method()

{0 be agile

\ No Concrete Coupling

Abstract Coupling

20

20

1/12/23

10

counling of P '

Coupling | Creation | (VETY
Type Yes No
Interface No Yes
Abstract Yes Yes
Concrete Yes No

{0 be agile 2

21

Mixing P .

® When you mix the perspective of creation with the perspective of
usage

— What you can change freely is nothing

— What you cannot change freely is everything

sort
W +sort(Stringf]): Stringf]
| ShellSart || QuickSort || MergeSort |

{0 be agile 2

22

1/12/23

11

Sort
+sort(String[]): String[]

A
| |

ShellSort || QuickSort || MergeSort |

I\)

SortFactory | N

{0 be agile

23

23

P rn: Buil i

construction.

{0 be agile

in F ri

Intent: Delegate object construction to a cohesive entity.

Encapsulates: Hides complex rules of construction or the
construction of multiple objects in a component.

Context: We have a complex set of rules required to construct an
object or we need to construct several objects to form a
component and no existing object should have the responsibility of

THEREFORE: Delegate instantiation to a cohesive entity who has
the responsibility of construction (i.e. a factory).

24

24

1/12/23

12

Factories

m_Factories are entities that encapsulate “new”

{0 be agile

25

25

Using a Factory

| Client I%I Context |<>— Strategy

AlgorithmInterface()

A

Factory |

ConcreteStrategyA

ConcreteStrategyB

ConcreteStrategyC

AlgarithmInterface()

AlgarithmInterface()

AlgarithmInterface()

{0 be agile

26

26

1/12/23

13

Pattern-oriented designs can appear overly generalized
We like generalized solutions because they are flexible
But too much flexibility can lead to bugs

The factory provides the constraints to ensure that only the right
objects are built

The rest of the software can deal with the objects as upcasts

Factories often provide a single point of maintenance

{0 be agile

27

27

The One Rule of Factories

Factories decide which objects to build and builds them but must NEVER
call methods on those objects.

The rest of your code may use the object created in factories but they
must NEVER new them up themselves.

Factories are generally easy to test when they follow these rules, we pass
in business rules to the factory and we see what objects it returns.

However, | often don’t explicitly test my factories because | build
behavioral tests and getting objects from factories is an implementation
detail.

{0 be agile

28

28

1/12/23

14

m There are many situations where you don’t need polymorphism or
you don’t need test-doubles and therefore don’t need to separate
object creation from object use.

m For example, if you want to use a String or any other external
service, package, framework, etc. as we don’t anticipate we’ll be
changing these services, ever.

m But we still may want the user of a service to delegate instantiation
of the service so we can test the client and the service separately.
We can do this by passing the user of an object a fake instead of
the real object when testing.

{0 be agile

29
29
Newables and Injectables
m Misko Hevery talks about two different types of objects:
— Injectables: Node dependencies that are built in factories (or DI frameworks)
and injected into an object as needed.
— Newables: Leaf objects that only hold state and don’t have no dependencies.
®m [njectables
— Injectables may pass references to other injectables in their constructors
— Injectables may NEVER pass references to newables in their constructors
® Newables
— Newables may pass references to other newables in their constructor
— Newables may NEVER pass references to injectables in their constructor
to be agile 30

30

1/12/23

15

m Factories put object creation in one encapsulated place

m Factories can be used to remove subclass coupling
m Factories can inject dependencies or fakes for testing
m Factories become a single point of maintenance for many issues

m With factories we can refactor a concrete class to an abstract class
without breaking clients

{0 be agile »

31

Do | Need a Factory?

m Factories let us separate the perspectives of creation and use so
we can minimize coupling across objects

® But when should we use factories?

m Since we never know what could change should we always
use factories?

® This would be overkill

{0 be agile 2

32

1/12/23

16

m_ When should we focus on constructing our objects?

m |tis often easier to focus on object construction after you have
come up with your basic design

m Building objects apart from where they are used will lead to higher
code quality

{0 be agile %

33

e B 2

Object1

Object2

Object3

{0 be agile ”

34

1/12/23

17

m But when should we use factories? Always?

m That seems like an awfully big burden

{0 be agile

35

35

construction from use

B You must know different things to create an object versus to use it

B Separating out these perspectives means less unintentional
coupling for the classes involved

{0 be agile

m Many of the benefits of using factories come from the separation of

36

36

1/12/23

18

1/12/23

An Easier Way

m Benefit come from separating perspectives

m If we give an object the ability to create itself we can save the user
from having to do this

m This technique is called encapsulating construction

{0 be agile -

37

B The simple practice of encapsulating the constructor of a class
gives us all the benefits of separating perspectives with essentially
no extra work

m This allows us to break much of the dependencies clients have on
the classes they use

m |ater we can refactor a concrete class to an abstract class without
breaking clients

{0 be agile "

38

19

P rn: En | nstr ion

Intent: Give objects the responsibility of creating themselves

Encapsulates: Hides the object's type from its users.

Context: We would like users of objects to not have to create those
objects themselves.

THEREFORE: Objects can expose a public static method users
can call so the object creates itself.

{0 be agile %

39

public class Sort {
private Sort() {
// construction goes here
}
public static Sort getInstance() {
return new Sort();
}
/] ...
}
public class Document {
private Sort mySort;
public void processDocument () {
/7
mySort = Sort.getInstance() ;
mySort.sort () ;
/] ..
}

{0 be égile w0

40

1/12/23

20

| Refactoring to a Strategy

public abstract class Sort {
private Sort() {
// construction goes here

}
public static Sort getInstance() {

if (someDecision() == true)) {
return new ShellSort();
} else {

return new QuickSort();

’ No change to client! S

public class ShellSort extends Sort {
/7
}
public class QuickSort extends Sort {
/]
}
_public class Document {
private Sort mySort;
public void processDocument () {
/...
mySort = Sort.getInstance();
mySort.sort();
/...

{0 be agile

41

41

m Notice how when we encapsulate construction we can change a concrete
class into an abstract class and introduce polymorphism without breaking
our callers.

m Encapsulating construction allows us to inject design patterns, which are
often based on abstract classes, virtually anywhere in code without
breaking callers, allowing us a great deal of freedom to emerge designs.

m This one simple technique enables
well as independently verifiability.

{0 be agile

code to have maximum extensibility as

42

42

1/12/23

21

m When encapsulating construction we get many of the benefits of using a
factory without the extra effort.

m The benefits of encapsulating construction include

— Takes no extra time to provide

— Lets us refactor a concrete class into an abstract class without affecting
the caller

— Promotes the Open-Closed Principle

— Promotes a cohesion of perspectives by separating object creation
from use

{0 be agile "

43

m The object-oriented programming model is based on created autonomous,
assertive objects who are responsible for themselves.

® One of an object’s most important responsibilities is to instantiate itself.

m This is true for biological organisms like bacteria and humans as well as
solar systems and galaxies.

m |f fact, we see many similar patterns in nature for instantiating biological
processes that we see good coding practices, including abstract factory
and builder patterns.

{0 be agile w

44

1/12/23

22

Factories are for Assembling Objects

m | use encapsulation of construction whenever | create a class that | might
extend later.

m But when I’'m assembling objects from a group of classes then I'll often
use a factory. The benefits are:

— Factories help call out that you're using a group of classes together in some
way and lets you build them together.

— Put instantiation in a single, cohesive place.
— Factories tend to aggregate business rules.
— Factories build dependencies so code is more testable.

— Factories let you hide derived types so you can call them polymorphically and
extend them in the future.

{0 be agile

45

45

s .

~In Conclusion ./

m |nstantiation should be a central part of any object-oriented
program and should contain most of the business rules.

m Make services extensible by delegating their instantiation either to
their encapsulated constructor or a factory.

m This is often the best first step for untangling legacy code.

m Object instantiation helps unleash the power of object-oriented
programming to build decoupled systems that are extensible.

{0 be agile

46

46

1/12/23

23

Thank You!

Please fill out your feedback forms!

m_We have just scratched the surface, to learn more:

— Read my blog: htip://ToBeAgile.com/blog

— Sign up for my newsletter: http://ToBeAgile.com/signup

— Follow me on Twitter (@ToBeAgile)

— Read my book:

— Beyond Legacy Code: Nine Practices to Extend the Life (and Value) of
Your Software (available from http://BeyondLegacyCode.com)

— Attend my one of my Certified Scrum Developer trainings
— See http://ToBeAgile.com/training for my public class schedule

— Or contact me to arrange a private class for your organization

Visit http://ToBeAgile.com for more information

{0 be agile

47

47

Notes

{0 be agile

48

48

1/12/23

24

http://tobeagile.com/blog
http://tobeagile.com/signup
http://beyondlegacycode.com/
http://tobeagile.com/training
http://tobeagile.com/

