
1/12/23

1

1

Object Lifecycle Management

DB20111207
www.techniquesofdesign.com
info@techniquesofdesign.com

http://ToBeAgile.com
info@ToBeAgile.com © Copyright 2019 To Be Agile DB20190710

Patterns of Instantiation

1

2

David Scott Bernstein

n Software developer since 1980

n Trained 8,000 developers since 1990

n Author of the book Beyond Legacy
Code: Nine Practices to Extend the Life
(and Value) of Your Software

Website: http://ToBeAgile.com

Twitter: @ToBeAgile

2

http://tobeagile.com/
mailto:info@ToBeAgile.com
http://tobeagile.com/

1/12/23

2

3

My Book – Beyond Legacy Code
http://ToBeAgile.com
info@ToBeAgile.com

http://BeyondLegacyCode.com

§ Nine practices to design and build
healthy code, plus some tips on
dealing with legacy code.

§ Discusses the value and reasoning
behind the technical practices, so
both managers and the team can get
on the same page as to their value.

§ It’s not a “How To” book, it’s a
“Why To” book.

3

4

Why this Talk?

n Instantiation is at the very core of object-oriented programming but often
misunderstood and under-utilized.

n Failing to leverage instantiation in object-oriented programming creates
tightly coupled classes that are difficult to extend.

n This is the biggest technical issue I find in virtually all the code I see from
my clients, who are the largest companies in the world.

n When we leverage object instantiation we build software that is
straightforward to extend and verify, dropping the cost of ownership.

n In the 1990s, I taught nearly 4,000 professional software developers
wrong, everyone did, and I want to make up for that now as best I can.

-

4

http://tobeagile.com/
mailto:info@ToBeAgile.com
http://beyondlegacycode.com/

1/12/23

3

5

Patterns and Anti-Patterns

n Design patterns is a term coined by Christopher Alexander who used it to
describe the forces that make a structure “livable.”

n Design patterns were adopted by software developers to describe
common intents or way of encapsulating something that is varying.

n We commonly think of patterns as “best practices.”

n If patterns are “best practices” then anti-patterns are “worst practices.”

n In this session, we’ll look at some common anti-patterns, why they should
be avoided, and what good patterns can be used instead.

5

6

Anti-Pattern: Creating Objects You Use

n Good Intention: Create an object so you can use its services.

n Flaw: Over-encapsulates services that an object uses.

n Result: From the outside, the created object becomes indistinguishable
from the object that creates it, making it impossible to independently
verify, extend, or reuse.

n Testability: Objects that create the services they use are inseparable from
those services so they must be tested together, which can make tests
slow and unreliable.

n Contraindications: This only applies to external dependencies or objects
you might want to extend in the future.

6

1/12/23

4

7

Why It’s Bad to Create Objects You Use

n When one object instantiates another object and then uses it
there’s no way to substitute the object it’s using.

n This creates a dependency between the two pieces of code that
makes it impossible to test each piece separately.

n It also means that we can’t extend one without changing the other.

n Following this anti-pattern causes a system to become brittle,
intertwined, and nearly impossible to work with.

7

8

For Example

n A common programming practice is to new up the services you
need in an object’s construction. For example:

public class MyClass {
Service myService;
public MyClass() {

Service myService = new Service();
}

public void doSomething() {
/* ... */
myService.process();
/* ... */

}
}

Instantiates

Uses

8

1/12/23

5

9

Problems with New

n The “new” keyword is used to create an instance of a class

n It requires that you pass in the class name

n It returns an instance of the class

n Therefore the caller of “new” must know the class it wants to
create

9

10

Mixing Perspectives

Here’s some code that I would have written 17 years ago

public class Document {

Sort sortStrategy;

public Document() {

Sort sortStrategy = new Sort();

}

public void prepareDocument() {

/* ... */

sortStrategy.sort();

/* ... */ }

}

Creates

Uses

10

1/12/23

6

11

What You Don’t Know…

n The more you know about an object the more coupled to it you
can get

n When two or more objects are coupled you cannot change one
without affecting the others

11

12

What You Must Know

n The fewer dependencies the client has the greater degree of
freedom the service has to change

n You must know different things to create an object versus use
an object

12

1/12/23

7

13

To Create an Object

n To instantiate an object you must know:

– The object’s type
– Any overloaded constructors

13

14

Creating Example

n What can you change without affecting the caller?

– You can change the method signature

n What can you not change without affecting the caller?

– You cannot change the specific derivations

14

1/12/23

8

15

To Use an Object

n To call methods on an object you must know:

– The object’s type, or
– The type the object is derived from, or

– An interface the object implements

n When you call a method you are also coupled to its interface

15

16

Using Example

n What can you change without affecting the caller?

– You can add new derivations

n What can you not change without affecting the caller?

– You cannot change the method signature

16

1/12/23

9

17

Good and Bad Coupling

n We are not striving for a system without any coupling

n We want the coupling that reflects the nature of the problem

n Each class should only be aware of the entities it must interact with

n We don’t want unnecessary coupling in the system

17

18

Bad Coupling

n Relationships that are not explicit can take many forms:

– Global variables
– Magic numbers

– Split functionality

– Overly generalized method signatures

18

1/12/23

10

19

Kinds of Coupling

Name Coupled To

Type coupling The existence of a class

Interface coupling The method signatures of another class

Abstract coupling The abstract type only

Concrete coupling A subtype in a polymorphic set

19

20

Coupling Example

Type Coupling

Interface Coupling

Abstract Coupling

No Concrete Coupling

20

1/12/23

11

21

Coupling of Perspectives

Coupling Creation Use
Type Yes No

Interface No Yes

Abstract Yes Yes

Concrete Yes No

21

22

Mixing Perspectives

n When you mix the perspective of creation with the perspective of
usage

– What you can change freely is nothing
– What you cannot change freely is everything

22

1/12/23

12

23

Isolating Perspectives

23

24

Pattern: Build Objects in Factories

n Intent: Delegate object construction to a cohesive entity.

n Encapsulates: Hides complex rules of construction or the
construction of multiple objects in a component.

n Context: We have a complex set of rules required to construct an
object or we need to construct several objects to form a
component and no existing object should have the responsibility of
construction.

n THEREFORE: Delegate instantiation to a cohesive entity who has
the responsibility of construction (i.e. a factory).

24

1/12/23

13

25

Factories

n Factories are entities that encapsulate “new”

25

26

Using a Factory

26

1/12/23

14

27

Advantages of Factories

n Pattern-oriented designs can appear overly generalized

n We like generalized solutions because they are flexible

n But too much flexibility can lead to bugs

n The factory provides the constraints to ensure that only the right
objects are built

n The rest of the software can deal with the objects as upcasts

n Factories often provide a single point of maintenance

27

28

The One Rule of Factories

n Factories decide which objects to build and builds them but must NEVER
call methods on those objects.

n The rest of your code may use the object created in factories but they
must NEVER new them up themselves.

n Factories are generally easy to test when they follow these rules, we pass
in business rules to the factory and we see what objects it returns.

n However, I often don’t explicitly test my factories because I build
behavioral tests and getting objects from factories is an implementation
detail.

28

1/12/23

15

29

Contraindications

n There are many situations where you don’t need polymorphism or
you don’t need test-doubles and therefore don’t need to separate
object creation from object use.

n For example, if you want to use a String or any other external
service, package, framework, etc. as we don’t anticipate we’ll be
changing these services, ever.

n But we still may want the user of a service to delegate instantiation
of the service so we can test the client and the service separately.
We can do this by passing the user of an object a fake instead of
the real object when testing.

29

30

Newables and Injectables

n Misko Hevery talks about two different types of objects:

– Injectables: Node dependencies that are built in factories (or DI frameworks)
and injected into an object as needed.

– Newables: Leaf objects that only hold state and don’t have no dependencies.

n Injectables

– Injectables may pass references to other injectables in their constructors

– Injectables may NEVER pass references to newables in their constructors

n Newables

– Newables may pass references to other newables in their constructor

– Newables may NEVER pass references to injectables in their constructor

30

1/12/23

16

31

Summary of Factory Benefits

n Factories put object creation in one encapsulated place

n Factories can be used to remove subclass coupling

n Factories can inject dependencies or fakes for testing

n Factories become a single point of maintenance for many issues

n With factories we can refactor a concrete class to an abstract class
without breaking clients

31

32

Do I Need a Factory?

n Factories let us separate the perspectives of creation and use so
we can minimize coupling across objects

n But when should we use factories?

n Since we never know what could change should we always
use factories?

n This would be overkill

32

1/12/23

17

33

The Question of Construction

n When should we focus on constructing our objects?

n It is often easier to focus on object construction after you have
come up with your basic design

n Building objects apart from where they are used will lead to higher
code quality

33

34

And Then a Miracle Happens

Object1

Object2

Object3

Client Factory

34

1/12/23

18

35

Problems with Factories

n But when should we use factories? Always?

n That seems like an awfully big burden

35

36

Separate Construction from Use

n Many of the benefits of using factories come from the separation of
construction from use

n You must know different things to create an object versus to use it

n Separating out these perspectives means less unintentional
coupling for the classes involved

36

1/12/23

19

37

An Easier Way

n Benefit come from separating perspectives

n If we give an object the ability to create itself we can save the user
from having to do this

n This technique is called encapsulating construction

37

38

Enter Encapsulating Construction

n The simple practice of encapsulating the constructor of a class
gives us all the benefits of separating perspectives with essentially
no extra work

n This allows us to break much of the dependencies clients have on
the classes they use

n Later we can refactor a concrete class to an abstract class without
breaking clients

38

1/12/23

20

39

Pattern: Encapsulate Construction

n Intent: Give objects the responsibility of creating themselves

n Encapsulates: Hides the object's type from its users.

n Context: We would like users of objects to not have to create those
objects themselves.

n THEREFORE: Objects can expose a public static method users
can call so the object creates itself.

39

40

Encapsulating Construction

public class Sort {

private Sort() {
// construction goes here

}

public static Sort getInstance() {

return new Sort();
}

// ...

}

public class Document {
private Sort mySort;

public void processDocument() {

// ...

mySort = Sort.getInstance();
mySort.sort();

// ...

}

}

40

1/12/23

21

41

Refactoring to a Strategy

public abstract class Sort {

private Sort() {

// construction goes here

}

public static Sort getInstance() {

if (someDecision() == true)) {

return new ShellSort();

} else {

return new QuickSort();

}

}

// ...

}

public class ShellSort extends Sort {

// …

}

public class QuickSort extends Sort {

// …

}

public class Document {

private Sort mySort;

public void processDocument() {

// ...

mySort = Sort.getInstance();

mySort.sort();

// ...

}

}

No change to client!

41

42

Now Objects are Extensible

n Notice how when we encapsulate construction we can change a concrete
class into an abstract class and introduce polymorphism without breaking
our callers.

n Encapsulating construction allows us to inject design patterns, which are
often based on abstract classes, virtually anywhere in code without
breaking callers, allowing us a great deal of freedom to emerge designs.

n This one simple technique enables code to have maximum extensibility as
well as independently verifiability.

42

1/12/23

22

43

Why Encapsulate Construction

n When encapsulating construction we get many of the benefits of using a
factory without the extra effort.

n The benefits of encapsulating construction include

– Takes no extra time to provide

– Lets us refactor a concrete class into an abstract class without affecting
the caller

– Promotes the Open-Closed Principle

– Promotes a cohesion of perspectives by separating object creation
from use

43

44

An Object’s Responsibility

n The object-oriented programming model is based on created autonomous,
assertive objects who are responsible for themselves.

n One of an object’s most important responsibilities is to instantiate itself.

n This is true for biological organisms like bacteria and humans as well as
solar systems and galaxies.

n If fact, we see many similar patterns in nature for instantiating biological
processes that we see good coding practices, including abstract factory
and builder patterns.

44

1/12/23

23

45

Factories are for Assembling Objects

n I use encapsulation of construction whenever I create a class that I might
extend later.

n But when I’m assembling objects from a group of classes then I’ll often
use a factory. The benefits are:

– Factories help call out that you’re using a group of classes together in some
way and lets you build them together.

– Put instantiation in a single, cohesive place.

– Factories tend to aggregate business rules.

– Factories build dependencies so code is more testable.

– Factories let you hide derived types so you can call them polymorphically and
extend them in the future.

45

46

In Conclusion

n Instantiation should be a central part of any object-oriented
program and should contain most of the business rules.

n Make services extensible by delegating their instantiation either to
their encapsulated constructor or a factory.

n This is often the best first step for untangling legacy code.

n Object instantiation helps unleash the power of object-oriented
programming to build decoupled systems that are extensible.

46

1/12/23

24

47

Thank You!

n We have just scratched the surface, to learn more:

– Read my blog: http://ToBeAgile.com/blog
– Sign up for my newsletter: http://ToBeAgile.com/signup

– Follow me on Twitter (@ToBeAgile)

– Read my book:
– Beyond Legacy Code: Nine Practices to Extend the Life (and Value) of

Your Software (available from http://BeyondLegacyCode.com)

– Attend my one of my Certified Scrum Developer trainings
– See http://ToBeAgile.com/training for my public class schedule

– Or contact me to arrange a private class for your organization

– Visit http://ToBeAgile.com for more information

Please fill out your feedback forms!

47

48

Notes

48

http://tobeagile.com/blog
http://tobeagile.com/signup
http://beyondlegacycode.com/
http://tobeagile.com/training
http://tobeagile.com/

