
Extracted from:

Beyond Legacy Code
Nine Practices to Extend the Life (and Value) of Your

Software

This PDF file contains pages extracted from Beyond Legacy Code, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Beyond Legacy Code
Nine Practices to Extend the Life (and Value) of Your

Software

David Scott Bernstein

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-079-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—June 17, 2015

https://pragprog.com
rights@pragprog.com

Introduction
This book will help you drop the cost of building and maintaining software.

If you’re a software developer, you’ll learn a set of practices to help you build
changeable code, because when code is used it often needs to be changed.
For managers working with software developers, this book will show you how
investing in nine essential practices will help your team work more efficiently
to deliver software that doesn’t devolve into legacy code. And to do that, you
need more than just a technical to do list—you need a firm understanding of
the principles that add the why to the how.

Every day, we lose time, money, and opportunities because of legacy code.

Different people have different definitions for “legacy code,” but put most
simply, legacy code is code that, for a few different reasons, is particularly
difficult to fix, enhance, and work with.

And there’s a lot of it out there. Virtually all software that I’ve seen in produc-
tion is legacy code.

The software industry as a whole hasn’t put enough value on maintainability,
so businesses wind up spending a great deal more to maintain code than
they initially spent to write it. As we’ll see in Chapter 2, Out of CHAOS, on
page ?, inefficiencies in how software is built costs businesses at least tens
of billions of dollars every year in the United States alone—and this is hardly
just some abstract figure on a ledger sheet somewhere. We feel the effects of
legacy code every day. Software is expensive, buggy, and hard to enhance.

People from inside and outside the industry have taken sides and argued for
or against certain project management methodologies—a lot of which contain
some truly brilliant ideas—but in order to affect lasting change for the better,
we first have to come to a mutual understanding of the fundamental goals of
software development.

This book isn’t just about creating better software, it’s about creating a better
software industry. It includes the best of what I’ve learned in the last thirty

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

years as a professional developer. The first two decades of my career were
spent doing traditional Waterfall software development where systems were
planned, built, and tested in distinct phases. The problem was, the way we
planned to build software turned out to be fraught with many unforeseen
issues that forced us to make serious compromises in both quality and budget.

But over the last decade things have been changing for me, and for other
software developers I know, who have been practicing an Agile software
development methodology called Extreme Programming (XP). Instead of trying
to figure everything out up front, we figure things out as we go, designing,
building, and testing little bits of software at a time.

XP practices such as test-driven development and refactoring have taught
me valuable lessons for decreasing both the risks and the costs of building
and extending software. Using these practices has shown me a range of dif-
ferent approaches for solving software problems. Can applying these practices
reveal ways of building higher quality, more maintainable software?

I say the answer is a resounding Yes!

Early in my career as a programmer, I got an assignment to reconcile stock
data from the Standard and Poor’s feed into my client’s proprietary database.
Up until then the process was done manually, which was error-prone and
took, on average, fourteen hours each day to complete. I was asked to auto-
mate this process, but the best approach to accomplish this was not clear to
me at first.

After a few weeks, and writing over forty pages of code, I had a flash of insight
that involved reorganizing how I processed the data. Within a few hours I had
finished the project and slashed out all but five pages of code. What I thought
would take me several more months when I came into work that morning
turned out to be finished before I left that evening. Since then I have had
many flashes of insight that have revealed underlying patterns in problems
that, once recognized, showed me how to rapidly build highly maintainable
solutions.

This is but one example of dramatic differences in productivity between
alternate ways of approaching the same problem. I’ve heard many similar
stories from other developers. Perhaps you have your own stories of when
you had a flash of insight and suddenly a difficult problem became simple.

In my professional experience, the difference between highly productive
developers and average developers can be profound. I’ve spent most of my
career studying those rare individuals who are many times more productive

Introduction • iv

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

than average software developers. What I’ve learned is that these people
weren’t born that way. They’ve simply formed some different distinctions than
the rest of us and perhaps follow some unusual practices. All of these things
are learnable skills.

As a young industry we’re still figuring things out and learning to distinguish
what’s important from what’s unimportant. Building software is very different
from building physical things. Perhaps some of the challenges facing the
software industry are rooted in a misconception of what software development
actually is. In an effort to understand software development, to make it pre-
dictable, it has been compared to manufacturing and civil engineering. While
there are similarities between software engineering and other fields of engi-
neering, there are some fundamental differences that may not be obvious to
someone who isn’t actually writing software on a daily basis.

The fact that software engineering is not like other forms of engineering should
really come as no surprise. Medicine is not like the law. Carpentry is not like
baking. Software development is like one thing, and one thing only: software
development. We need practices that make what we do more efficient, more
verifiable and easier to change. If we can do this, we can slash the short-term
cost of building software, and all but eliminate the crippling long-term cost
of maintaining it.

To that end, I offer nine practices that come from the Agile methodologies of
Extreme Programming, Scrum, and Lean. When not just adopted but fully
understood, these nine practices can help prevent the code we write in the
future from becoming legacy code.

And though there is an awful lot of code out there that’s either impossible to
fix or already slipping into obsolescence, we can use these same practices to
slowly dig our way out of the mountain of legacy code we’ve already accumu-
lated.

These nine practices will help development teams build better software, and
help the industry as a whole stop leaking money, time, and resources.

I’ve seen these nine practices work for my clients, who build some of the
biggest and most complex software ever created. I know it’s possible to achieve
extraordinary results using these practices, but just “using” them by no means
guarantees success. We must understand the principles behind the practices
in order to use them correctly.

These are interesting times, and we get to be part of them. And while we are
pioneers venturing into uncharted territory, there are guiding lights. The nine

• Click HERE to purchase this book now. discuss

Introduction • v

http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

practices in this book have been guiding lights for me in my career as a soft-
ware developer and beyond. I hope they become guiding lights for you as well.

How to Use this Book
Beyond Legacy Code: Nine Practices to Extend the Life (and Value) of Your
Software is about developing software, but you don’t have to be a software
developer to understand it.

How software is written may be an alien concept to most people, yet it affects
us all. Because it has become such a complex activity, developers often find
themselves trying to explain concepts for which their customers, and even
their managers, may have no point of reference. This book helps bridge that
communications gap and explains technical concepts in common sense lan-
guage to help us forge a common understanding about what good software
development actually is.

Getting different kinds of readers on the same page with technical practices
is no easy task, but to that end this book is designed to help five different
groups of people share a common understanding of software development:

• software developers
• software development and IT managers
• software customers
• product and project managers from any industry
• and literally anyone interested in this vital technology

I’ve tried to make the world of software development accessible to everyone
by borrowing elements of story structure, writing the book in the first person,
and drawing on a wide range of stories, analogies, and metaphors to illuminate
technical concepts. It can be hard to generalize about software development
and easy to find exceptions to a lot of what I say but there’s usually a deeper
insight to be found.

To make this book accessible to non-developers and focus on the importance
of these practices, it’s not written as a how-to book. There are already several
good books on everything from story writing to refactoring (see the bibliogra-
phy). While this book does offer lots of practical advice, what makes it different
and most valuable are the discussions of why the technical practices are
useful. This approach helps non-developers, like our managers and stakehold-
ers, understand some of the issues and challenges developers face when
building software.

Introduction • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

Part 1: The Legacy Code Crisis
In Part I, The Legacy Code Crisis, on page ?, I confront the significant issues
facing the software industry head on and find that billions of dollars are lost
every year due to poor software development processes.

Much of the software that runs our lives is buggy, brittle, and nearly impos-
sible to extend, which is what we mean when we say “legacy code.” How did
we get here and what does that mean, not just in terms of the software
industry but also in terms of all the other people and industries it touches?

If you’re already familiar or perhaps even frustrated with the software industry
you’ll find more than just “preaching to the choir” in these pages. You’ll also
find a deeper insight into why things often don’t work out as planned when
building software, and lots of good reasons why better approaches are needed.

Even for software industry insiders, Part 1 can put these significant challenges
in their proper context. Managers and developers alike may discover a fresh
perspective on the problems we, as an industry, are facing every day. As one
manager said to me, “It added arguments to my arsenal.” It may help you
spread the message that at least we have to recognize that there is a problem
before we can solve it.

For people coming to this book from outside the software industry in particu-
lar, Part 1 may surprise you. In fact, I all but guarantee it will surprise, even
shock you.

Part 2: Nine Practices for Building Maintainable Software
In Part II, Nine Practices to Extend the Life (and Value) of Your Software, on
page ?, with the problem clearly stated, the remaining three quarters of the
book moves past the doom and gloom and into a set of practices that provides
a real, workable solution, beginning with practices that are most useful for
managers.

In Chapter 5, Practice 1: Say What, Why, and for Whom Before How, on page
? and Chapter 6, Practice 2: Build in Small Batches, on page ?, I offer some
hands-on recommendations for not just how better to begin implementing a
complex software development process but to manage that process all the
way through to completion. These two practices will be of particular interest
to those of you coming from outside the software industry, with advice that
can easily translate to any project management environment. By adopting
these practices you can…

• operate more efficiently

• Click HERE to purchase this book now. discuss

How to Use this Book • vii

http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

• save money in both the short and long term
• create higher quality software
• increase customer satisfaction and repeat business

The next seven practices are much more software developer specific and
present technical practices I found most helpful in my career.

I’ve seen these practices both succeed and fail. Software development teams
have applied best practices but with poor technique so they didn’t get the
value they were hoping for. The difference between teams that are successful
with these practices and teams that aren’t comes down to understanding why
these practices are important in the first place. That’s what this book stresses.

And though these are ultimately technical practices, I urge managers—in any
industry—to open your minds to the basic concepts. Know the challenges
your developers face, and share with them the fact that there are practical,
start-right-now practices that can move that team from foundering through
broken processes to a new level of efficiency and effectiveness.

As you read through the descriptions of these practices, I urge you to think
about why these practices are valuable before studying how to implement
them on your project. This will help you learn how to use the practices more
effectively.

Though I do recommend reading—and adopting—all nine practices, feel free
to adopt the practices in any order you like. I certainly recognize that everyone
coming to this book will have specific issues and specific needs, which is why
I organized Part II as nine individual practices. Concentrate on what will help
you most and help you fastest, but please don’t stop there.

I’m Not Planting a Flag, I’m Opening a Door
How you read this book, and what you take from it, is up to you. I’ve tried to
avoid circling the wagons around terms like Agile, Scrum, or XP. I want Beyond
Legacy Code: Nine Practices to Extend the Life (and Value) of Your Software to
change the way people think about the still-new profession of software
development and help bring it into the mainstream. I want to open up discus-
sion throughout the software community, where we too often take sides, argue
details while missing the bigger picture, and otherwise dig ourselves into
trenches when we should be sharing ideas based on a single common goal:
to build the best possible software.

Introduction • viii

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

Online Resources
The code examples in this book can be found online at the Pragmatic Program-
mers web page for this book.1 You’ll also find a discussion forum where you
can ask questions and receive feedback, as well as an errata submission form
where issues with the text can be reported, plus a lot more.

1. http://pragprog.com/book/dblegacy

• Click HERE to purchase this book now. discuss

Online Resources • ix

http://pragprog.com/book/dblegacy
http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

